Zwischen virtuellem Raumklang und visuellem Klangraum

March 5th, 2012 by Sebastian

The art magazin “Wendepunkt” published an article I wrote on architectural versus accoustical quality of spaces.

Unfortunately this is in German only:

http://www.wendepunkt-magazin.de/index.php?option=com_content&view=article&id=198:zwischen-virtuellem-raumklang-und-visuellem-klangraum&catid=90:titelthema&Itemid=18

Der Berliner Architekt Sebastian Gmelin gestaltet täglich Gebäude mit Hilfe von 3D Software. Anhand einer experimentellen Studienarbeit schildert er, wie diese dreidimensionalen Simulationen zu einer virtuellen Realität werden, welche Räume zu entwerfen erlaubt, die über physikalische Grenzen und Möglichkeiten hinausgehen. Neben der visuellen Qualität von Raum interessieren ihn vor allem der klangliche Charakter von Architektur und die musikalischen Gestaltungsmöglichkeiten, die durch räumliches Design entstehen. Zwischen virtueller Realität und realer Akustik bilden sich interessante Überlagerungen und Spannungsfelder.

Das Klacken eines springenden Tischtennisballs ertönt in der Ferne. Wir schweben durch ein Raster aus Lichtstrahlen und kommen dem seltsamen Geräusch näher. Andere Klänge begegnen uns – Stimmen und Instrumente, links oder rechts. Das Klacken wird immer lauter und übertönt schließlich alles. Schon kurze Zeit später klingt es wieder von weit weg, diesmal hinter uns. Neben mir hebt Reinhard seinen Bogen und streicht über die Metallstäbe seines Waterphones. Wie Walgesang mischen sich die schwingenden Töne mit den Klangquellen im Raum.
Musikalische Aufführung in der Cave mit Fleck on the Flag, Foto: Uwe Zimmat Wir befinden uns in der Cave des Rechenzentrums der Universität Stuttgart. Auf die uns umgebenden Wände und auf den Boden wird die Simulation eines künstlichen Raumes projiziert, der durch unsere 3D-Brillen plastisch wirkt. Mit Hilfe eines Joysticks fliegen wir durch diese virtuelle Konzertlandschaft aus Linien und  Klängen, die Teil der Simulation sind und durch ein Surround System wiedergegeben werden. Dazu spielen Reinhard und Georg live auf ihren experimentellen Instrumenten. selbst gebautes Waterphone der Band Fleck on the Flag, Foto: Sebastian Gmelin Die Komposition ist eine Entwurfsarbeit, die in Zusammenarbeit mit Julia Kölle und der Ulmer Band Fleck on the Flag an der Architekturfakultät der Universität Stuttgart entstanden ist. Mit Hilfe der beschriebenen Technologie wurde die Auflösung des statischen Raumkonzepts bei Konzerten, die Unterteilung in Bühnen- und Publikumsbereich untersucht. Kann Musik räumlich erfahrbar werden?

Raumakustik in der Architektur

Die räumliche Qualität der akustischen Sinneswahrnehmung wird meist nur unterbewusst wahrgenommen. Vielleicht ist sie gerade deshalb so wichtig für unser Raumempfinden. Auch Architekten beschäftigen sich meist nur am Rande mit der klanglichen Gestaltung von Raum. Oft geht es dann um Schall absorbierende Maßnahmen in einem Büro oder einer Bahnhofshalle. Räume jedoch, die für musikalische Darbietungen genutzt werden, unterliegen strengen klanglichen Gestaltungsparametern. Diese sind trotz hoher Rechenleistung nur schwer zu simulieren und eine virtuelle Abbildung am Computer ist nahezu unmöglich. Neben dem Direktschall, also den Wellen, welche unser Ohr ohne Reflektion erreichen, sind eben jene reflektierten Schallwellen von großer Bedeutung für das klangliche Empfinden eines Raumes. Sie erzeugen je nach Ausprägung Nachhall und Klarheit. Der Raum wird praktisch zum Klangkörper, zu einem übergeordneten Instrument. Seine akustische Qualität muss idealerweise an allen Sitzpositionen ausgewogen sein, was eine homogene Ausbalancierung voraussetzt.  Die Proportionen des Raumes spielen dabei genauso eine Rolle, wie die Gestaltung der Oberflächen, die Sitze und die Konstruktion. Die Schwierigkeit der Simulation dieser Parameter setzt eine große Erfahrung bei der akustischen Gestaltung von Konzertsälen voraus. Oft orientieren sich auch Spezialisten an bestehenden Räumen und kopieren deren Proportionen. Der reduzierte Formenkanon der modernen Architektur, vor allem der Verzicht auf Ornamentik, steht dabei im Kontrast zur akustischen Gestaltung. In historischen Konzertsälen spielen Verzierungen, Reliefs und Skulpturen eine große Rolle bei der diffusen Schallstreuung. In zeitgenössischen Sälen werden daher wieder vermehrt Ornamente eingesetzt oder die Form des Raumes komplex gestaltet, wie beispielsweise im geplanten Konzertsaal für St. Petersburg.
Konzertsaal, New Holland Island, St. Petersburg (Visualisierung), © Foster + Partners, London

Stockhausens kompositorischer Ansatz

Einen umgekehrten Ansatz von Räumlichkeit in der orchestralen Musik verfolgte Karlheinz Stockhausen. In seinem Werk Gruppen von 1953 arrangierte der Komponist drei Orchester mit drei Dirigenten in U-Form um das Publikum. Durch die kompositorische Gestaltung der Klangrichtungen und die Verschiebung von Tönen machte er den Raum zum Teil seines Werkes. Spätere Werke, wie Carré, schreiben sogar vier Orchester und vier Chöre vor, wodurch die Raumdisposition der Klangereignisse noch genauer gestaltet werden konnte. Der Raumklang des Aufführungsortes wird dabei nicht gänzlich unterdrückt, bekommt aber eine untergeordnete Bedeutung.

Der virtuelle akustische Raum

In unserem am Anfang beschriebenen Entwurfsprojekt spielt dieser von Stockhausen untersuchte Aspekt eine Hauptrolle. Durch die technischen Möglichkeiten der Simulation konnten wir die räumliche Verteilung von Schallquellen auf die Spitze treiben. Die unterschiedlichen Schallquellen sind so weit voneinander entfernt, dass nie alle Töne gleichzeitig hörbar sind. Der Hörer gestaltet die Komposition durch seine Bewegung im virtuellen Raum und entscheidet dadurch, welche Klänge er hört und kombiniert. Die Künstler von Fleck on the Flag geben also einen Teil der Kontrolle über die Komposition an den Besucher ab; die strenge Rollenverteilung wird aufgebrochen und als Zuhörer werden wir auch Komponisten. Da man sich als Zuhörer in dieser virtuellen 3D-Welt praktisch schwerelos bewegt, wird der klangliche Raum als Orientierungshilfe grafisch übersetzt. Ein Raster aus weißen Linien definiert die Bühne, die akustische Ausdehnung und repräsentiert zugleich das Bass-Motiv der Komposition. Alle weiteren Schallquellen sind durch Farbbereiche dargestellt. Taucht man in eine dieser Farben ein, wird das entsprechende Geräusch oder die Melodie hörbar. Überlagern sich Farben oder Raster, überlagern sich auch die zugehörigen Klänge. Die Gesamtheit der Instrumente und Klänge ist an keiner Stelle im virtuellen Raum gleichzeitig zu hören. Als Besucher trifft man immer eine Selektion und beeinflusst auf diese direkt das musikalische Erlebnis. Durch den abstrakten Charakter der Darstellung können die Zuhörer nicht wissen, welche Klänge sich hinter den verschieden Farben oder Formen verbergen. Die Bewegung im virtuellen Raum startet demnach oft zufällig und wird dann als Reaktion auf das Hörereignis fortgesetzt. Diese primäre Klangebene, die aus der Position im virtuellen Raum entsteht, wird durch eine zweite, reale Musikebene überlagert – den Musikern, die mit den Besuchern in der Cave stehen und zu den entstehenden Klängen musizieren.
Virtuelle Überlagerung eines realen raumakustischen Bühnenraumes

Neben der Umsetzung als 3D-Projektion, hat uns bei unserem Entwurf auch die Gestaltung eines realen Bühnenraumes interessiert. Ein Raum, der die Grenzen zwischen Publikum und Band aufhebt und neue Möglichkeiten der räumlichen Akustik bietet. Im Zusammenspiel mit der Verteilung von Schallquellen und  sich bewegenden Zuhörern soll sich auch der visuelle Raum verändern. Entstanden ist ein Entwurf aus mehreren halb-transparenten Leinwandschichten. Sie legen sich ringförmig um ein räumliches und klangliches Zentrum und bilden ein endloses Wegesystem durch welches sowohl Musiker als auch Zuhörer wandeln und dadurch das räumliche Musikerlebnis beeinflussen. Wie in der virtuellen Umsetzung der Grundidee sind auch in dieser Konzertlandschaft einige Schallquellen, wie Lautsprecher oder das Schlagzeug, unbeweglich. Ihre relative Position verändert sich durch die Bewegung der Zuhörer trotzdem. Die Musiker bewegen sich mit ihren Instrumenten teils nach einer geplanten Choreographie, teils improvisiert und spielen zu Klängen aus im Raum verteilten Lautsprechern. Das Publikum bewegt sich frei zwischen den Leinwänden. Der einzelne Zuhörer gestaltet durch seine Position im Raum das räumliche Gefüge der Musik. Ein wesentlicher architektonischer Aspekt ist die räumlich-virtuelle Überlagerung der Bühne. Von außen werden animierte grafische Muster und Verläufe auf die Leinwände projiziert. Sie scheinen die starren Leinwände in Bewegung zu versetzen, zu verbiegen, zu falten. Die Helligkeit der Projektion beeinflusst auch die Transparenz der Leinwände und dadurch die räumliche Schichtung der Bühne. Die Sichtbarkeit der Musiker und anderer Besucher wird zum Teil der Gesamtkomposition. Raum und Musik weiten und verdichten sich im Zusammenspiel. Die Bewegtheit der Musik kann räumlich gespiegelt oder kontrastiert werden.

Der virtuelle Raum als Simulationswerkzeug

Es geht also um verschiedene Aspekte der Interaktion. Das hier überzeichnete Zusammenspiel von Raum und Mensch besteht letztendlich in der Architektur allgemein. Unsere Bewegung und Position beeinflussen unsere Wahrnehmung von Gebäuden. Dieser visuelle Charakter von Raum lässt sich inzwischen fast realistisch simulieren. Das wichtigste Kriterium ist dabei das von den verschiedenen Oberflächen reflektierte Tages- und Kunstlicht. Ähnlich dem akustischen Effekt von Schallwellen erzeugen diese reflektierten Lichtstrahlen maßgeblich die visuelle räumliche Wahrnehmung. Die virtuelle Darstellung von Entwurfsideen ist zu einem wichtigen Werkzeug in unserem architektonischen Alltag geworden. Konzepte werden nicht mehr nur als Grundrisse und Schnitte gezeichnet, sondern vor allem dreidimensional modelliert und schließlich visualisiert. Der virtuelle Raum wird zum fotorealistischen Abbild der geplanten Realität und damit einerseits zum Präsentations- und andererseits zum Kontrollwerkzeug. In unserem Büro designyougo in Berlin überprüfen wir alle unsere Ideen virtuell bevor diese gebaut werden. Die Bilder zeigen den Entwurf für ein kleines Filmstudio in Berlin. Bei der Gestaltung wurde auf eine neutrale Lichtfarbe geachtet und eine diffuse Ausleuchtung, um die Qualität des zu bearbeitenden Filmmaterials am Bildschirm nicht zu beeinflussen. Natürlich bestehen bei einem solchen Projekt auch Anforderungen an die Akustik der Räume,  wenn auch – im Vergleich zu einem Konzertsaal – nur recht banale: vor allem die akustische Trennung der einzelnen Räume ist ein wichtiges Kriterium und wird durch doppelte Wände und hochwertige Türen mit Akustikdichtungen realisiert. Die großen Fortschritte der visuellen Computersimulation von der Zeit meines Architekturstudiums in Stuttgart bis heute  lassen darauf hoffen, dass in naher Zukunft auch die Akustik von Räumen realistisch und mit verhältnismäßig einfachen Mitteln simuliert werden kann.
Im Rechenzentrum Stuttgart verstummt inzwischen das Klacken des Tischtennisballs und die Klänge von Reinhards Waterphone werden immer leiser. Die Vorstellung ist zu Ende und unser virtueller Bühnenentwurf löst sich auf Knopfdruck in Schwärze auf. Das Licht geht an. Willkommen zurück in der Realität!

Share

Hanging Chain Simulaiton Tool

November 28th, 2011 by Sebastian

Hanging Model of Colonia Güell, Gaudi, source: http://www.rolfdieternill.de/pictures/tragwerkslehre082_Page_3.jpg

This “Simulation Design Tool” is inspired by Gaudi’s work. It turns neshes into so called Particle Spring Systems that act similar to physical hanging chain models.
The resulting “funicular shapes” represent structures performing well as tension systems – or, when inverted – as pressure structures.

The most simple system is a single haning chain as shown in the following video. The segmented line sinks and approximates a catenary shape.

To start a simulation, a B-net is drawn. Using the subdivision tools in the context menu the shape is subdivided to create panels.

Attaching a PhysicsSpringSystem to this B-net, turns it into a Particle Spring System. The vertices of the Net become particles and the edges connecting them turn into elastic springs. When starting the simulation, the system relaxes and starts moving. Changing the gravity moves the particles up or down.

Using the sliders on the right, additional constraints can be applied to the system. They act as additional forces on each panel, trying to planarize it or qualizing its edges’ or diagonals’ length. The system autommatically balances all applied forces.

When re-editing the underlying B-net, the simulation adopts. Changes in edges’ length are translated into changes of spring restlengths. Fixpoints will move along automatically.

Attaching a PhysicsMeshExtrusion to the simulation B-net creates a thickened shell. The thickness of the shell is informed by the spring forces in the system. The higher the imbedded forces, the thicker the shell. This is a relative assignment and the minimum and maximum thickness are controled by sliders.

The shape can be modified locally by using one of the specialist tools. They allow control over local spring forces (relaxing or tightening) and over local vertex weight.

Share

B-processor – eCAADe 2011, Ljubljana

November 28th, 2011 by Sebastian

Simulation Design Tools

Using Parametric Building Information Modeling and Physical Simulation for Form Finding of Double Curved Surfaces.

Sebastian Gmelin1, Kristian Agger2, Michael Henry Lassen3

1,2Aarhus School of Architecture, Denmark, 3Alexandra Institute, Denmark

1,2,3http://www.B-processor.dk, 1,2http://www.aarch.dk, 1http://www.gmelin.li, 3http://www.alexandra.dk

1sebastian@gmelin.li, sebastian.gmelin@aarch.dk, 2kristian.agger@aarch.dk, 3henryml@cs.au.dk

Abstract. Parametric modeling is a powerful tool to create variations of a design following specified criteria. Physical modeling provides flexible relationships between design elements and can simulate the behavior of hanging chain models. Building Information Modeling can contain geometry and design properties and relations. In this paper it is proposed to join all three to create a Simulation Design Tool that allows the intuitive creation of double curved surfaces which follow the rules of funicular systems (Figure 1). This tool is implemented in B-processor, open-source Building Information Modeling software to bridge the break that occurs when moving from a design software package to Building Information Modeling. It is shown how the tool balances intuitive sculpting and accurate simulation and how the user can interact to mediate different design requirements.

Keywords. Form Finding; Parametric Building Information Modeling; B-processor; Particle Spring System; Grid Shell.

Figure 1

Figure 1
Shell Structure created in B-processor using Physical Simulation Design Tools

Introduction

Ambitious architectural design often relies on computational technologies these days. Parametric design and freeform surface modeling tools allow the creation of complex geometries that challenge construction methods. The logistics of these kinds of projects can become very sophisticated. The work effort and the process of translating geometry into shop drawings, producing construction elements and assembling them on site is multiplied by the number of different pieces and the variation of elements. Complexity becomes so high that consultants and construction companies specialize in these projects and support architects and engineers.

To handle such projects, drawings and specifications are complemented with parts schedules, CNC production code, parts labeling, position tags and special assembly strategies. To manage the variety of elements or minimize the variation in an optimization phase, these documents are usually created from parametric 3D models, which are highly specialized Building Information Models.

This is interesting because BIM technologies and software are usually not considered to be design tools. More general tools, often not even particular (architectural) CAD software is used to generate shape. The desire for freedom and flexibility is driving the design phase, while full control and precision of this design is the ultimate wish before going on site. These two extremes seem to split the traditional gradual workflow in architecture, starting from a first sketch until the creation of construction and shop drawings. The advantage of a smooth workflow is obvious, when (for any reason) the design or parts of it need to change. If the design model is not linked to the information model properly, this change might be laborious work.

The second aspect of this split is the question of constructability and economy of design. Both can only be answered with enough information at hand, meaning when a BIM model is developed. Minimizing the variation of elements, simplifying and optimizing the shape towards a specific construction method might only be done with the help of a parametric model that contains enough information about this construction. Of course these phases can be linked and a parametric setup can use a design surface as an input parameter, but these solutions are currently special answers to unique problems. It is also difficult to link the design back to the outcomes of an optimization result.

It is suggested to try using a Building Information Modeling environment for the design of complex geometries; bundling design, optimization and information phases to grow and refine shapes with the addition of detail and construction. The requirement of such software is the combination of flexibility and accuracy. While a design develops, information is added continuously, both manually and automatically; aspects of a design inform each other.

Simulation Design Tools

‘The concept of Building Information Modeling is to build a building virtually, prior to building it physically, in order to work out problems , and simulate and analyze potential impacts’ (Olcay 2010) . Pursuing the idea above, these results should not only be used to check but also re-inform the design. Instead of defining an iterative process of designing, analyzing, re-designing and re-analyzing, it is proposed to create a combination of design and analysis: simulation design tools. Simulation design uses the object property tags, meaning Building Information, to re-inform design tools. The designer works intuitively and creates desired shapes while a simulation or analysis is run in parallel processing these parameters. The tool balances user input against simulation results. Many different simulations can be considered for such tools: structural performance, thermal analysis or self shading studies, acoustical performance of spaces, or spatial relationships of rooms. It could also be imagined to use security simulations, crowd control or building sensor positioning as a simulation driver and of course combinations of these.

To achieve this, any simulation algorithm needs to be simple enough to run at high speed not to compromise the intuitive feel to the user. At the same time it has to be precise enough to create exploitable information. This choice between intuition and precision has to be answered for each individual tool. Most likely such simulation design tool will not meet the expectations of relevant specialized analysis software.

Common surface modeling tools translate user input directly into change of geometry. Moving its control points affects a B-Spline surface directly. This would contradict the idea of simulation design. Instead of changing geometry, the designer changes parameters of the simulation. This does not necessarily mean that only number values can be changed to modify a shape. To develop tools giving the impression of sculpting a shape while actually changing simulation properties is important to make the idea successful. Examples of how this could be implemented for a specific case will be shown later in this paper.

The result of this process is not only geometrical shape but also attached information. Both are directly created from the simulation and therefore updated when the shape is changed again. It is an important aspect of this process that information is not added separately in an additional step. In contrary: geometry and information form a unity and are created together. They are not just linked; they interact and ideally contain objective parameters which can help to proceed the design development.

This should not be mistaken for building components that can be placed in many BIM software packages. Those components are ready-made parametric building parts also containing geometry and relevant information. They can be modified to adopt different situations. Simulation design however does not aim to create a complete building or building-part in one step. It just tries to solve one design criterion with its related analytical aspect. The outcome might be a construction component but could as well be much more abstract: a form that maximizes views and minimizes shade, a shape that creates good acoustics or performs well structurally. Information stored in such a model is therefore not only describing the final design but also criteria that were chosen to make a design decision.

B-processor – Building Information Modeling

B-processor [3] forms the framework for the project. It is open-source BIM software currently being developed at the Aarhus School of Architecture in collaboration with the Alexandra Institute (Agger, Lassen, Knudsen, Borup, Rimestad, Norholdt, Bramsen, 2007). This lightweight CAD environment allows simple modeling in the style of Google’s Sketch-up.

B-processor translates Building Information Modeling very literally. It allows the creation of geometric 3d models and to attach information properties to its building objects. These are related and can refer to each other. In B-processor, building objects are organized in spaces. Those can be functional or constructional and have references to geometrical elements describing the shape of the space. Spaces hold properties: values, descriptions and classifications. Relations between spaces are solved automatically when spaces share a surface. To describe abstract parts of a design, like grids, guidelines, etc, an additional element was introduced: a B-Net. It is also a space that contains faces, lines and vertices but it is not taken into account when calculating relationships or schedules. This simplistic approach and the flexible architecture of B-processor allow design modeling as well as information modeling. (Figure 2).

The essential aspect of B-processor is its open-source license. This is a possible answer to the problem of compatibility of different software packages and file formats. The more information a Building Model contains, the more difficult it becomes to exchange its data. The idea is to allow users to modify the software to their needs. Data created in B-processor will never be lost, because the software is free and everybody involved in a project can use it without purchasing expensive licenses.

 

Figure 2
Model of the Ruin Hall in Kolding, created in B-processor

In a first phase of this research project, parametric objects were integrated in B-processor. They form the base for any simulation design tool as envisaged. Desired strategies depend on flexibility of geometry, constraints and dependencies. The kernel of the software was changed to allow any object drawn to become parametric by attaching scripts to it. Their parameters can be numerical or graphical, like grids or points. The information tags of an object can be used as parametric properties. There is no difference between information that is added manually or automatically by a tool and both can be used to inform the design through simulation tools.

Example – Physical Simulation Tool

As a first example and to challenge the above ideas, physical simulation was implemented in B-processor. As shown by Axel Kilian and John Ochsendorf (2005), particle-spring systems can be used to simulate hanging chain models. The shape of hanging chains represents so called funicular forms of tension and can be inverted to create pure compression structures. Many designers experimented with this technique: Gaudi, Heinz Isler and Frei Otto for example. Rebuilding Gaudi’s hanging model of Colonia Güell (Figure 3), Frei Otto (1989) and his team showed how laborious the creation of such a physical model is. The complexity of this process and of the resulting shapes makes it a valid case for a computational approach. Following Axel Kilian’s research, a tool is developed that uses a particle-spring system based on a Verlet algorithm, solving Newton’s laws of motion for a number of particles reacting to forces and moving in space.

Figure 3
Hanging Model of Colonia Güell, Gaudi, source: http://www.rolfdieternill.de/pictures/tragwerkslehre082_Page_3.jpg

Different forces act on each particle: gravity, forces of connected springs, damping forces and potentially more. These forces accelerate the particle taking its mass into account and following the equation (1). The movement of particles is calculated for a time step using equations (2) and (3). The Verlet algorithm combines these laws into one equation (4) [1].

Acceleration = Force / Mass (1)

ΔVelocity = ΔTime Acceleration (2)

ΔDistance = Velocity ∙ ΔTime (3)

ΔDistance = Velocity ∙ ΔTime + 0.5 ∙ Acceleration ∙ ΔTime2 (4)

To create such a system, the user draws any B-Net in B-processor. A “physics system” is then attached to the geometry. It automatically generates particles from all vertices and springs from all edges. Global parameters define the behavior of the simulation. To simplify the workflow, they are applied to all elements. The user can choose to change these settings locally, though, if desired. These parameters are gravity, mass, spring constant and spring equilibrium length and are used to calculate the forces acting on particles (5) (6).

Gravity Force = Mass ∙ Gravity (5)

Spring Force = -Spring Constant ∙ (Spring Length – Equilibrium Length) (6)

When starting the simulation, the particles begin to move and to deform a copy of the original B-Net. If gravity is defined other than 0, the particles are accelerated along the negative Z-axis resulting in a tension form. This can be easily reverted by applying a positive gravity that pulls the particles upwards. To prevent the whole system from moving, single vertices can be defined as fix points. The movement of particles stretches the springs until their force is strong enough to bring the system to equilibrium. The user has several possibilities to interact while the simulation is running in order to control and modify form:

  1. 1. Modifying the original, underlying b-Net: A change in the original geometry modifies the properties of the physics system accordingly. Increasing or decreasing the length of an edge results in a corresponding change of the relevant springs’ equilibrium lengths
  2. 2. Moving fix points: The positions of fix points are constantly tracked and updated. When a fix point is moved, the according point of the physics system is dragged to follow it.
  3. 3. Changing global parameters: a change of gravity, mass or global spring constant is an easy way to control the dilation of the system and the resulting curvature.
  4. 4. Changing parameters locally: Selecting an edge of the design shape allows the user to change the spring parameters for this single edge. Increasing or decreasing its spring constant or equilibrium length gives control over its stretching behavior making it stiffer or more flexible. Selecting a vertex allows the changing of its related particle’s mass.

Figure 4
Creation and Modification of a Funicular Shape

To enhance the intuitive feel, sculpting tools were implemented that allow modifying the shape locally through mouse input. Choosing such a tool, the mouse pointer becomes a “brush” that defines an area affecting the change. The user selects and clicks on parts of the geometry to change them. Selecting only a vertex, results in a very local change while selecting faces affects a wider area of the form. The tool translates the user’s input into modification of parameters. It can therefore not result in an immediate change of geometry. In fact, the user outweighs the equilibrium and the particles will move again until reaching a new state of balanced forces. Two different sculpting tools were created to illustrate this.

  1. 1. Changing the equilibrium length: With this tool, mouse input actually results in a change of the length a spring tries to reach. The user can relax or tension the shape locally, having the impression of pulling or pushing a surface. Translating this back to a physical hanging chain model, where the springs are actually chains or ropes and particles are represented by weights hung to them, this would mean a change to the length of rope between to weights. In the simulation, this connection is not subdivided and stays straight. It could be considered as a system of adequately stiff sticks that are flexibly connected to each other.
  2. 2. Modifying particle masses: Similarly to the above tool, the user changes the shape locally. Instead of modifying the springs, the tool changes the mass of particles. While increasing or decreasing that property, the impression of pulling or pushing the surface is generated. Looking at the physical hanging chain model, this can be regarded as changing the weights hung to the chains without changing their geometrical relations.

The flexible interaction of the user causes a diversion from an optimal structural solution. The advantage of using a simulation tool to mediate different requirements is that user input and computational analysis are in constant dialogue. The shape adapts automatically to parameter modification and local changes are built into the system as a whole. Because it is a flexible shape that can constantly change, more requirements can easily be assigned to it as long as they can be expressed by forces acting on particles. Additional demands might be the optimization of faces regarding similarity, planarity or rectangularity. Inspired by the work of Daniel Piker who developed the physics plug-in “kangaroo” for Rhino with Grasshopper [2], these design parameters were implemented in the tool. They all use the faces of the underlying B-Net to assign relevant forces to the particles linked to those faces’ vertices. The following forces can be assigned to the system:

  1. 1. Equal face edges: Additional springs are assigned to the face’s edges. Their equilibrium length is defined as the average edge length. They act in parallel to existing springs, enforcing or contradicting them. Triangles try to become equilateral and quadrilateral shapes try to become rhomboids.
  2. 2. Equal face diagonal: This is similar to the equal edges. Springs are assigned to the diagonally opposite particles of quadrilateral shapes. These two springs try to achieve the same average equilibrium length, transforming irregular quads towards trapezoidal shapes.
  3. 3. Face rectangularity: This is actually not a single parameter but rather a combination of 1. and 2. A quadrilateral shape with even edge length and both diagonals being the same length is a square. As the forces are keeping the system flexible the resulting shapes become more rectangular.
  4. 4. Face planarity: For each face of more than three vertices, an average plane is calculated from all vertices. A force is applied to each particle of the face dragging it perpendicularly towards this average plane.

It is most unlikely that all these demands, when applied, are being fulfilled perfectly. Depending on the form, the requirements of similar, regular and planar shapes can only be reached to certain extent while compromising the original hanging form. By changing the strength of relevant forces, the user chooses how to weight different parameters. Assessing a parameter as very strong, compromises other forces and their related requirements. It is left to the designer to mediate all demands.

Figure 5
Applying Additional Requirements as Forces to the Form

The tool does not only create a geometric shape but also stores all information used to come to it as property tags linked to the single entities of the form. Vertices remember their mass, for example, and edges maintain all information on their related spring: length, equilibrium and spring constant.

This combination of geometry and information can drive the next design step. The 3D model becomes an interlinked parametric Building Information Model.

Parametric Building Information Modeling

Before turning any form created with the above method into detailed construction, a volumetric construction space has to be generated from the design surface. A second tool uses geometry and forces created in the first step to automate this process. It thickens the surface unevenly and in relation to the spring forces acting in the edges. This should not be confused with a structural analysis arriving at specific sections for structural members. It is a relative assessment, assuming only that springs that are stretched more from their equilibrium than others are strained more. For the maximum and the minimum spring force, a thickness is assigned and interpolated linearly:

  1. 1. The maximum and the minimum spring force are searched by checking all edges of the system.
  2. 2. All spring forces are interpolated linearly to values from 0 (minimum force) to 1 (maximum force)
  3. 3. For each vertex the average spring force of all connected edges is calculated.
  4. 4. From the surrounding surfaces, the average normal is calculated for each vertex.
  5. 5. The vertices are moved in direction of their normal and opposite. The translation distance for each direction is calculated using equation (7).
  6. 6. The offset vertices are reconnected to create faces enclosing the construction space volume.

Offset = 0.5 ∙ (min. Offset + Force Interpolation ∙ (max. Offset – min. Offset)) (7)

Figure 6
Extrusion of the Hanging Shape in Relation to the Inherited Forces of the Springs

Two options of the offset are created: a shell and a grid-shell version. Because of the non-parallel offset, the faces are not necessarily planar. This can be solved by re-using the physical simulation tool. Setting gravity to 0 and defining the springs’ equilibrium as the actual length of the edges, planarity can be assigned as a single requirement.

Conclusions

The research on simulation design tools is still in its beginning. Combining the ability of Building Information Modeling to link geometric 3D data to any additional information with the flexibility of parametric modeling and the analytical objectivity of simulation might be a powerful strategy for building design. It will be interesting and necessary to develop and test other simulations for such tools. Ideally those tools are:

  1. 1. Intuitive – they must work as design tools and allow the user to mediate parameters.
  2. 2. Simple – no extensive specialist knowledge should be needed to use the tool.
  3. 3. Precise – Simulation results need to be so accurate that they improve the design by objective measure.
  4. 4. Neat – any created data must be organized and linked.

Looking at Building Information Modeling as a concept of ‘management of information and the complex relationships between (…) resources’ (Jernigan 2007) rather than restricting software solutions, allows its use for design tasks in a very sophisticated manner and helps to integrate, use and maintain design-relevant data.

For the demonstrated physics simulation and the resulting shapes a proof of the structural performance has to be carried out. This is also an opportunity to develop a link to structural analysis software and to research how simulation design tools and analysis software could communicate and how this could be integrated into the workflow. This study should be completed by adding the possibility to create a more detailed 3D model of a specific construction method, a concrete shell or a grid-shell construction.

References

Agger, K, Lassen, M, Knudsen, N, Borup, R, Rimestad, J, Norholdt, P and Bramsen, N 2007, ‘B-processor -building information design and management’, Predicting the Future, Proceed­ings of the 25th eCAADe Conference, pp. 43–50.

 

Jernigan, FE 2007, BIG BIM little bim, the practical approach to building information modeling, 4Site Press, Salisbury, Maryland.

 

Kilian, A, Ochsendorf, J 2005, ‘Particle-spring systems for structural form finding’, Journal for the international Association for shell and spatial structures, IASS, vol. 46.

 

Olcay, Ç 2010, ‘A review of Building Information Modelling Tools from an Architectural Design Perspective, in J. Underwood and U. Isikdag (eds), Handbook of research on Building Information Modeling and Construction Informatics, Hershey, New York.

 

Otto, F (ed.) 1989, The Model, Information of the Institute of Lightweight Structures (IL) No. 34, Karl Krämer Verlag, Stuttgart.

 

[1] http://www.lonesock.net/article/verlet.html.

[2] http://spacesymmetrystructure.wordpress.com/2010/01/21/kangaroo/.

[3] http://www.B-processor.dk.

 

Share

SmartGeometry 2011, use the force cluster

April 17th, 2011 by Sebastian

Project Palmtrees

http://smartgeometry.org/index.php?option=com_community&view=groups&groupid=2&task=viewgroup

http://archinect.com/features/article/2112195/smartgeometry-2011-copenhagen-denmark

Using given parameters, project “palmtree” tries to create a flexible model that adapts to user input using physical bending parameters of flexible plastic rods of 6 mm diameter.

The “dancefloor”, a 2×3 m timber construction reads in user movement through a series of pressure sensors. They are connected to an Ardurino board and linked to a grasshopper model using firefly. So is a camera, tracking position and rotation of reacTVision markers.
The “dancefloor” represents the buildings plan. Positioning a marker “grows” a tree at the relative position in the room. Moving around and activating the pressure sensors, applies forces to the top of the tree making it bend towards the user’s position.
The trees themselves are woven from elastic plastic rods. Their bending stiffness is approximated using Kangaroo physics plugin. The structure tries to become as straight as possible while the external forces of the user input deform it. The ends of the rods move freely and are attracted to the room’s ceiling using spring forces. When a tree bends, these loose ends “crawl” along the ceiling to find a new connection position.
The project balances real physical input (firefly), physical simulation (Kangaroo) and a physical model: One instance in time was “frozen” and built as a 1:1 structure in the workshop space. While this final structure can’t move or react to user interaction, physical modeling allows a flexible and intuitive formfinding process.

Smartgeometry 1
Smartgeometry
Smartgeometry 3
Smartgeometry 4

together with:
Asbjorn Sondergard
Pablo Resende
Mario Guidoux

Share

Morphogenetic Studio at Aarhus School of Architecture 2010-2011

January 29th, 2011 by Sebastian

Morphogenetic Studio is an experimental investigation of form generating processes through digital as well as analogue tools. The studio takes its starting point in an exploration of how relations between the general and the specific might be challenged by digital design techniques. Architects have of course always been interested in how general principles could be unfolded in specific design solutions informed by specific contextual conditions, but digital tools offer new ways of investigating these questions through the use of scripting and parametrically controlled models.  Digital models also offer new ways of linking design and realisation processes, which is another core interest of the studio. Morphogenetic Studio investigates these questions with an emphasis on spatial and tectonic potentials and possibilities.

 The studio is based on an integration of architectural teaching and research in the field of digital tectonics and algorithmic design.  The goal is to create an environment that is rooted in specific research subjects and which can generate products that reflect the research and at the same time can become a part of it.

Final installations

101015-London-3

101015-London-3

101015-London-3

101015-London-3

101015-London-3

Exhibition and Presentation

101015-London-3

101015-London-3

101015-London-3

 

 Final books and videos 

 
.interference by Bjarke Schødt, Mathias Meldgaard, Thomas Bang & Troels Holm | Make Your Own Book

 

 
MORPHOGENESIS OF ANT SWARM INTELLIGENCE by Christine Hauge Ringsmose, Agnija Rubene, Mikkel Horsbøl Lauridsen & Tobias Theil Konishi | Make Your Own Book

 

Morphogenesis Of Ant Swarm Intelligence from Tobias Theil Konishi on Vimeo.

Morphogenetic Studio // Cell Structures by Kristoffer Rauff, Lars Borgen, Annica Carina Tomasdotter Ekdahl, Anne Winther Worm | Make Your Own Book
 

Students:

  • Lars Borgen,
  • Annica Carina Tomasdotter Ekdahl,
  • Kristoffer Rauff,
  • Anne Winther Worm,
  • Troels Holm,
  • Thomas Bang Madsen,
  • Mathias Meldgaard,
  • Bjarke Lehmann Schødt
  • Nikolaj Bogensee Johansen,
  • Ragnar Zachariasen,
  • Tatiana Mukhina
  • Tobias Theil Konishi,
  • Mikkel Horsbøl Lauridsen,
  • Christine Hauge Ringsmose,
  • Agnija Rubene
  • Anita Vårbo Berglund,
  • Pelle Hviid Andersen,
  • Mateusz Bartczak

 

Teachers: 

  • Claus Peder Pedersen,
  • Niels Martin Larsen,
  • Sebastian Gmelin
Share

Joint Workshop AA London AAA Arhus

October 18th, 2010 by Sebastian

Tutors: Robert Stuart-Smith, Knut Brunier, Niels Martin Larsen, Sebastian Gmelin
Rhino scripting, laser cutting

101015-London-3

101015-London-4

101015-London-5

101015-London-6

101015-London-7

Share

Morphogenetic Interferences – Student trip to London

October 18th, 2010 by Sebastian

101015-London-1

Serpentine Pavillon, Jean Nouvel

101015-London-1

Parametric Architecture London

Share

launch of new B-processor webpage!

October 4th, 2010 by Sebastian

The new B-processor webpage was now launched!
http://www.b-processor.dk

Share

Morphogenetic Interferences – student course at Aarhus School of Architecture

September 28th, 2010 by Sebastian

In a 2 weeks workshop, the students learned programming from scratch, using ‘processing’. They were given scripts to start from. Modifying these, or developing their own programs, the students worked on a ‘morphogenetic interference’. Starting point is an ordered grid of regular elements that is interfered by an input, i.e. the mouse, another element or self organised ‘agents’. The students worked in groups, developing their own concepts and views on interference, potential inputs and graphical representations on the topic. The results become highly complex, unpredictable. Interesting effects that weren’t foreseen – emergent effects – were analysed and taken into account.

 

Morphogenetic Interferences Book

 

Book

 

 

 

Teachers 

  1. Claus Peder Pedersen
  2. Niels Martin Larsen
  3. Sebastian Gmelin

 

 Students 

  1. Lars Borgen
  2. Kristoffer Rauff
  3. Stefanie Krusch
  4. Liv Framgard
  5. David Gaarde Mikkelsen
  6. Karen Heggheim
  7. Nikolaj Bogensee Johansen
  8. Ragnar Zachariasen
  9. Pelle Hviid Andersen
  10. Christine Hauge Ringsmose
  11. Kirstine Kannegaard
  12. Mikkel Horsbøl Lauridsen
  13. Tobias Theil Konishi
  14. Sophie Rye Hansen
  15. Lasse Lykke Olsen
  16. Kristian Kjærgaard
  17. Troels Holm
  18. Bjarke Schødt
  19. Mathias Meldgaard
  20. Thomas Bang
  21. Anita Berglund
  22. Mateusz Bartczak
  23. Betina Haraldsen
  24. Colm O ‘Brien
  25. Tatiana Mukhina
  26. Lea Vakili
  27. Anne Winther Worm
  28. Annica Ekdahl
  29. Mika Katarina Friis
  30. Jakob Tauman
  31. Thomas Lillevang
Share

introduction to processing (scripting)

September 28th, 2010 by Sebastian

www.processing.org

Processing Introduction Slide 01

Processing Introduction Slide 02

Processing Introduction Slide 03

Processing Introduction Slide 04

Processing Introduction Slide 05

Processing Introduction Slide 06

Processing Introduction Slide 07

Processing Introduction Slide 08

Processing Introduction Slide 09

Processing Introduction Slide 10

Processing Introduction Slide 11

Processing Introduction Slide 12

Processing Introduction Slide 13

Processing Introduction Slide 14

Processing Introduction Slide 15

Processing Introduction Slide 16

Processing Introduction Slide 17

Processing Introduction Slide 18

Processing Introduction Slide 19

Processing Introduction Slide20

Processing Introduction Slide 21

Processing Introduction Slide 22

Processing Introduction Slide 23

Processing Introduction Slide 24

Processing Introduction Slide 25

Processing Introduction Slide 26

Processing Introduction Slide 27

Processing Introduction Slide 28

Processing Introduction Slide 29

Share